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Abstract

This paper evaluates the effects of VaR limits and quantitative restrictions on
portfolio choices in the context of a risk-based supervision framework. It shows the
conditions under which Value-at-Risk (VaR) constraints are equivalent to constraints
on volatility. The paper also presents some considerations that regulators should take
into account when adopting a risk-based supervision framework.
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1 Introduction

A risk-based approach for supervision and regulation of the financial sector is gaining
ground. Market risk is one of the components that regulators attempt to measure,
monitor, and mitigate. The VaR measure has been one of the possibilities that have
been explored for this purpose. One of the most important sectors in which this
practice has been adopted is the pension funds industry. For example, Mexico has
adopted a regulation that combines quantitative limits and a Value-at-Risk (VaR)
limit and some other countries are considering adopting a similar framework.
This paper evaluates the effects of VaR limits and quantitative restrictions on

portfolio choices. The paper is organized as follows: Section 2 presents some equiv-
alences between VaR limits and conventional risk measures. These equivalences are
used to obtain some implications with respect to the effects of VaR limits. Section
3 uses Chilean data to exemplify these effects and discuss specific characteristics of
VaR based supervision.1 Finally, Section 4 presents some recommendations.

2 Some equivalences

This section derives some equivalences among commonly used strategies for portfolio
selection. These strategies share the property of choosing portfolios that combine
returns and volatility such that the investor’s objective function is maximized. For
instance, the mean-variance frontier approach implies that the portfolio is chosen
such that volatility is minimized subject to the constraint of obtaining a certain
expected return. It is shown that this strategy is equivalent to one that assumes
quadratic preferences and therefore maximizes a utility function that is increasing in
expected return and decreasing in volatility. Finally, under certain circumstances,
these strategies are also equivalent to a VaR approach, under which the investment
manager chooses a portfolio that maximizes expected returns subject to the constraint
that the probability of a loss beyond a given amount is set at a fixed level.
The circumstance under which this last result holds is when the distribution of

returns is elliptical, which generally implies symmetry. Thus, this result is not re-
stricted to the case of normality. The equivalences that are derived are useful to
discern the likely effects of imposing VaR limits.

2.1 Quadratic preferences and the mean-variance frontier

Let there be n risky assets with mean vector m and covariance matrix V . Define wa

as the n-vector of portfolio weights for an arbitrary portfolio a with weights summing
to unity. The mean return and variance of this portfolio are denoted by µa = w0am
and σ2a = w0aV wa respectively.

1We use Chilean data because of its availability. The results obtained are not country specific.
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Definition 1 Portfolio p is the minimum-variance portfolio of all portfolios with
mean return µp if its portfolio weight vector is the solution to the constrained opti-
mization problem:

min
w

1

2
w0V w (1)

subject to
w0ı = 1 (2)

w0m = µp. (3)

The first order conditions for this problem are:

V wp − λ1ı− λ2m = 0. (4)

where ı is an n-vector of ones, and λ1 and λ2 are the Lagrange multipliers of (2) and
(3) respectively.
Combining (2), (3), and (4), the solution:

wp = G+Hµp (5)

is obtained, where G and H are n-vectors,

G =
1

D

£
BV −1ı−AV −1m

¤
H =

1

D

£
CV −1m−AV −1ı

¤
,

and A = ı0V −1m, B = m0V −1m, C = ı0V −1ı, and D = BC −A2.2

The expected return is by definition w0pm = µp and its volatility is:

σ2p = w0pV wp =
1

D

£
Cµ2p − 2Aµp +B

¤
. (6)

The portfolio that attains the minimum variance subject to constraint (2) but not
(3) is the portfolio i with µi = A/C and σ2i = 1/C.

3 The mean-variance frontier is
the part of the curve of Figure 1 where the expected return (Mean) satisfies µp ≥ µi.
If risk were volatility, the minimum-variance portfolio problem is closely related to

the optimization problem in which an agent maximizes expected utility with quadratic
preferences (see Huang and Litzenberger, 1988; LeRoy and Werner, 2001).

Definition 2 Portfolio q is the optimal portfolio with quadratic preferences if its
portfolio weight vector is the solution to the following constrained optimization:

max
w

w0m− 1
2
γw0V w (7)

subject to (2).

2The optimal portfolio (5) admits short-sales (some of the weights may be negative). Short-sales
can be seen as proxies for the use of derivates by the portfolio manager.

3This portfolio is denoted by i in Figure 1.
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Figure 1: Mean-Variance Frontier: Constructed with the four instruments used by
Berstein and Chumacero (2006) that use monthly returns of fixed and variable income
instruments of Chile and the US. An i denotes the minimum-variance portfolio. With
maximum-expected return, maximum variance, or VaR constraint, the portfolios on
the Unconstrained region can not be chosen and the constrained potfolio r is obtained.

The parameter γ > 0 defines the degree of risk aversion, with higher values indi-
cating more of it. The solution to this problem is:

wq =
1

γ
V −1 (m+Eı) , (8)

where

E =
γ −A

C
.

Proposition 1 Portfolio q belongs to the mean-variance frontier.

Proof. Define µq = m0wq and let γ be:

γ =
D

µqC −A
. (9)
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Then, (8) can be expressed as:

wq = G+Hµq,

which belongs to the mean-variance frontier.
Note that if µq were set equal to A/C (the minimum variance portfolio i), γ

diverges in which case the problem is not well defined. Thus, µq > A/C must hold,
which implies that portfolio i is not a portfolio q.
The impact of imposing other constraints to an agent that has quadratic prefer-

ences is considered next. Studying how portfolio selection changes when the manager
faces other constraints is important as regulators may want to impose them as a re-
sponse to potential agency problems. The most natural constraint would be an upper
limit on the volatility of the portfolio. As it is shown, this constraint is equivalent
to imposing an upper limit on the expected return. For expositional purposes, the
proof of this equivalence starts by deriving this last portfolio.

Definition 3 Portfolio r is the optimal mean restricted portfolio with quadratic pref-
erences if its portfolio weight vector is the solution to the following constrained opti-
mization:

max
w

w0m− 1
2
γw0V w

subject to (2) and
w0m ≤ µ. (10)

Proposition 2 If µ > A/C, portfolio r belongs to the mean-variance frontier.

Proof. Using (9) note that if:

µ >
D + γA

γC
,

constraint (10) is not binding and wr = wq. When this condition is violated, µq > µ.
In that case, wr = wp for µp = µ.

Definition 4 Portfolio s is the optimal variance restricted portfolio with quadratic
preferences if its portfolio weight vector is the solution to the following constrained
optimization:

max
w

w0m− 1
2
γw0V w

subject to (2) and
w0V w ≤ σ2. (11)

Proposition 3 If σ2 > 1/C, portfolio s belongs to the mean-variance frontier.
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Proof. Using (6) note that:

µ =
A+

p
D (Cσ2 − 1)
C

is the expected return consistent with σ2 in the mean-variance frontier. The proof
follows from Proposition 2.
The previous propositions make clear that within this framework, imposing a

constraint that precludes the volatility of a portfolio to exceed a threshold is equivalent
to imposing a constraint on its expected return not to exceed a threshold. Figure 1
shows that these constraints imply that, within the quadratic preferences framework,
the chosen portfolio would be either a portfolio on the mean-variance frontier in the
constrained area (when the constraint is not binding) or it will be portfolio r (when
the constraint is binding). Combinations of expected return and volatility on the
unconstrained area would be unfeasible because they would violate the constraint.

2.2 Value-at-Risk and the mean-variance frontier

Value-at-Risk (VaR) has become a popular tool for risk management of financial
institutions.4

Let l (w) be the observed return of portfolio w. As the returns are random, so is
l (·). Given the cumulative distribution of l (·), define the Value-at-Risk [V aR(w,α)]
of portfolio w for a probability α as the value that produces:

Pr [l (w) ≤ V aR(w,α)] = α.

That is, the probability of obtaining a return of V aR(w,α) or lower is α%.5

If the returns follow an elliptic distribution with mean m and covariance matrix
V ,6 then:

V aR(w,α) = w0mt + kα(w
0Vtw)

1/2,

with kα being the quantile of level α of the distribution.7

4See Dowd (1998) for references.
5Oftentimes, l (·) is defined as a loss (instead of a return) and V aR(w,α) should be viewed

accordingly.
6A multivariate elliptical distribution is fully characterized by its mean, covariance matrix, and

characteristic generator. A linear combination of an elliptically distributed vector is also elliptical.
Elliptical distributions are symmetric and unimodal, but are not constrained regarding kurtosis.
Examples of elliptic distributions are the normal, Student-t, logistic, and Laplace distributions.

7If the returns follow a multivariate normal distribution kα = za = −z1−α, where zα = Φ−1 (α)
(with Φ−1 (·) denoting the inverse of the cdf of a standard normal distribution). For example, if
α = 0.025 and the returns are normal, kα = −1.96. If the returns follow a multivariate Student-t
distribution with v > 2 degrees of freedom, kα = za (v) [(v − 2) /v]1/2. In general, if the returns
follow an elliptical distribution, V aR will be a linear function of the mean and standard deviation
of the portfolio.
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Definition 5 Portfolio v is the minimum VaR portfolio for a level α if its portfolio
weight vector is the solution to the following constrained optimization:

max
w

w0mt + kα(w
0Vtw)

1/2 (12)

subject to (2).

Proposition 4 If α < 1/2 and kα < −
p
D/C, portfolio v belongs to the mean-

variance frontier.

Proof. Alexander and Baptista (2002, Proposition 1) show that if kα < −
p
D/C,

portfolio v exists and takes the form:

wv = G+Hµv,

where:

µv =
A

C
+

vuutD

C

Ã
(kα)

2

C (kα)
2 −D

− 1

C

!
which is in the mean-variance frontier.
As was the case with the q portfolio, the minimum variance portfolio (i) is not

VaR efficient given that µv > A/C must hold. Thus, if the distribution of the returns
allows for the VaR function to be expressed as in (12), the v portfolio can be expressed
as a q portfolio by setting:

γ =

"
1

D

Ã
C (kα)

2

C (kα)
2 −D

− 1
!#−1/2

.

If VaR minimization were subject to the maximum volatility constraint (11), the
resulting portfolio can be described as a v portfolio resulting from an optimization
with quadratic preferences and the same volatility constraint. If an additional VaR
constraint of the form:

w0mt + kα(w
0Vtw)

1/2 ≥ V aR (13)

is considered, the resulting portfolio also belongs to the mean-variance frontier.
If this constraint is not binding, portfolio v is selected; however, if is binding,

there is a k such that:
w0mt + k(w0Vtw)

1/2 = V aR.

If k < −
p
D/C, the constrained portfolio will still be in the mean-variance portfolio

and would be equivalent to an r or v portfolio, with a stricter volatility constraint
that would be to the left of the constraint depicted in Figure 1.
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3 Implications for VaR-based supervision

With elliptically distributed returns, VaR portfolio optimization or VaR limits are
equivalent to maximum return or maximum volatility limits. This portfolio is equiva-
lent to one obtained with a quadratic objective function. The resulting portfolio will
be on the mean-variance frontier.
Next, we discuss some important implications of these results and consider po-

tential effects for the practice of imposing VaR limits for pension funds.

• Welfare: In the case of pension funds, regulations over investment strategies
such as VaR-based supervisions or quantitative limits, are often motivated as a
response to a principal-agent problem. The regulator may consider that pension
fund administrators (the agent) may be inclined to take riskier positions than
what the affiliates (the principal) would prefer. The optimality of a particular
regulation requires for the regulator to know the preferences of the principal
and agent. With a competitive market and if the affiliates are free to choose
their pension fund administrator, the less likely it is to observe differences on
the incentives of the principal and the agents. Even with no principal-agent
problems, regulation of investment strategies may be used because of the ex-
istence of moral hazard. For example, several governments provide minimum
pension guarantees, which may induce both the principal and the agent to take
riskier positions than in the absence of the guarantees. Thus, optimality and
welfare considerations of a given regulation depend on how different are the
preferences of the agent, the principal, and on the ability of the regulator to
better approximate the preferences of the latter. Prior to imposing limits or
similar regulations, the regulator should be clear with respect to the source of
the problem and preferences and technologies of the agents involved .

• Limits: Berstein and Chumacero (2006) demonstrate that quantitative limits
are costly and inefficient mechanisms to limit the volatility of returns. This
happens because quantitative restrictions imply a mean-variance frontier that
is dominated by the mean-variance frontier without limits.

Figure 2 shows the mean-variance frontier of monthly returns in the case of
Chile. The continuous line corresponds to the frontier with no limits, the dotted
line forbids investing in foreign or domestic variable income instruments, and
the dashed line forbids investing abroad.8 The distance between the lines will
depend on how stringent are the limits. The minimum-variance portfolio of
the restricted problem is to the left of the unrestricted one. Furthermore, the
distance between the lines shortens on a given location depending on the specific
limits imposed.

8At present, pension funds can not invest more than 30% of their portfolio abroad.
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Figure 2: Effects of VaR and Quantitative Limits. The continuous line corresponds
to the unconstrained mean-variance frontier. The dashed line corresponds to the
mean-variance frontier with quantitative limits that prohibit investing abroad. The
dotted line corresponds to the mean-variance frontier with quantitative limits that
prohibit investing in variable income instruments.

Quantitative limits do not allow for proper diversification as, regardless of the
risk aversion of the agents, limits lead to inefficient portfolios, as less volatil-
ity could be achieved with the same expected return in the absence of limits,
or equivalently, obtain more return with the same volatility if no limits were
imposed. For instance, more stringent limits imply lower risk allowed, at the
expense of higher efficiency costs with respect to explicit volatility bounds. In
some instances, quantitative restrictions might be justified. For example, lim-
its on the investment on instruments issued by entities related to the pension
fund manager or limits by issuer that prevent a pension fund from controlling a
company may be desirable. Nevertheless, when imposing any restriction, costs
and benefits should be carefully assessed.

If a VaR limit were imposed, the selected portfolio would be on the efficient
frontier; however a stringent VaR limit may lead to a suboptimal allocation of
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resources for agents that are less risk averse than the implied bound.

If both restrictions are imposed at the same time, the selected portfolio would
be on the left side of the restricted frontier which implies an additional efficiency
cost. In the example of Figure 2, an extra 1.3% annual return could have been
obtained with the same volatility.

• Ellipticity: If the objective function is quadratic or the distribution of returns
is elliptic, the portfolios chosen are on the mean-variance frontier. In those
cases, a VaR limit will also be in the frontier (as long as the constraint is not
too restrictive). Furthermore, with elliptically distributed returns Conditional
VaR is equivalent to VaR (Rockafellar and Uryasev, 2000).

FCh VCh FUS VUS Chile US All
Skewness 0.00 0.01 0.77 0.00 0.00 0.11 0.00
Kurtosis 0.00 0.21 0.00 0.00 0.00 0.10 0.00
Jarque-Bera 0.00 0.01 0.00 0.00 0.00 0.06 0.00

Table 1: P-values of Ellipcity Tests. FCh=Fixed Income (Chile). VCh=Variable
Income (Chile). FUS=Fixed Income (US). VUS=Variable Income (US). Chile=Joint
test for fixed and variable income instruments of Chile. US=Joint test for fixed
and variable income instruments of US. All=Joint test for fixed and variable income
instruments of Chile and the US.

If returns do not have a symmetric distribution, the mean-variance frontier
may not be optimal (as long as preferences are not quadratic). Table 1 shows
tests for skewness, excess kurtosis, and normality for each instrument with the
Chilean example. As discussed, ellipticity does not preclude for excess kurtosis
which is characteristic in financial time series. For the case of Chilean assets,
normality is strongly rejected both for individual series and for its bivariate
distribution. The same is (marginally) true for the US series. However, in
the case of the US fixed income instrument, symmetry is not rejected.9 In
the absence of symmetry, VaR portfolios are not in the mean-variance frontier.
Furthermore, if agents take this characteristic into account, VaR may not be
the best risk measure.

• Dependence: In practice, the VaR of a portfolio is computed with historical
data. The historical VaR uses time series of returns expressed in the same (real)
currency and term and assumes that the returns are independent. Efficiency
would imply that this is not a bad assumption. However, using monthly data,

9Figure 3 presents additional evidence of the strong departures of normality of the series by
comparing their empirical quantiles with the theoretical quantiles of the normal distribution. When
normality is present, the dots should lie on the straight lines. The pattern of deviation from linearity
provides an indication of the nature of the mismatch.
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Figure 3: Theoretical (Normal) and Empirical Quantiles for Returns of Instruments

past returns help to forecast present returns. In that case, quantile estimates
should consider this property. The same can be said with respect to second mo-
ments. ARCH/GARCH features are typical of financial returns. This implies
that if VaR limits have the intention of limiting volatility, it should be consis-
tently estimated using time series models. The statistical properties of the data
are not properly taken into account with the historical VaR if dependence is
present.

Figure 4 presents the residuals of GARCH(1,1) models for fixed and variable
income instruments. These simple models present strong evidence of volatility
clustering (calm and volatile periods tend to display persistence). Depending
on the frequency and length of the observations used to compute the VaR
measure, this kind of dependence may imply overly restrictive limits in high
volatility periods and relatively loose limits on calm periods. As pension funds
invest for the long run and therefore periods of short term high (low) volatility
should not have a first order impact on the investment strategies of pension
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Figure 4: Projected Standard Deviation of Residuals in a GARCH(1,1) Model

fund managers.

• Term: Pension fund affiliates invest for their retirement and do not use the
funds invested in the process. In this case, VaR limits should consider the term
structure of risk. Guidolin and Timmermann (2006) demonstrate that the term
structure of VaR varies according to the distribution of the returns.

For example, assume that the returns follow a multivariate normal distribution
with mean vector m and covariance matrix V .10 In this case, no additional
information regarding the distribution of the returns can be gathered with past
data. If an agent decides to maintain the same portfolio for h periods, the mean
and covariance matrix of the returns will be hm and hV respectively.11

10As already discussed, time dependence in second moments and even in first moments make this
an unrealistic assumption in practice. Furthermore, this example assumes that there is no risk free
asset for the investing horizon and that fixed income instruments have a one-period maturity.

11In a more general framework, the investor should compute the h periods ahead forecasts of the
vector of expected returns and covariance matrix using the information available.
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In the quadratic preferences set-up, the portfolio chosen would be the same
regardless of the time horizon. This is because, the utility function is scaled by
the factor h and the first order conditions do not depend on h. Thus, without
changes in attitudes toward risk (γ) and under these restrictive assumptions,
quadratic preferences imply that the portfolio that is optimal for a 1 period
horizon is also optimal for any horizon. The standard deviation of a portfolio
held for h periods would follow the square-root rule (as the standard deviation
of that portfolio would be

√
h times the standard deviation of the portfolio held

for one period).

On the other hand, the VaR of this portfolio becomes:

V aR(w,α, h) = hw0m+ kα
√
h(w0V w)1/2 (14)

= hµ+ σkα
√
h.

As the objective function is not proportional to h, the optimal portfolio will
depend on h.

Take a portfolio, with expected return µ and volatility σ2. Differentiating (14)
with respect to h, the horizon h∗ where VaR attains a minimum is:

h∗ =
σ2 (kα)

2

4µ2
. (15)

For example, if the returns are normally distributed and α = 0.025, the value
of h at which (14) attains a minimum is approximately equal to the square of
the coefficient of variation of the portfolio. If the pair (µ, σ2) is the tuple of
expected return and volatility that would be optimally chosen for h = 1, (15)
makes clear that that same portfolio can not be optimal for h > 1 as (14) will
be increasing in h for h > h∗.

This implies that for h > 1, the first moment will tend to dominate the second.
Thus, an investor maximizing (14) for h > 1 will choose more aggressive strate-
gies (in line with the popular perception that the equity premium justifies more
aggressive strategies for long term investors).

Figure 5 shows the importance of considering the investing horizon. The longer
the investing horizon, the more aggressive the optimal v portfolio will be. The
equivalence between the v and q portfolio can be maintained by changing the
value of γ in the objective function (7). As the second panel of the figure
stresses, the risk aversion parameter γ should decrease with increases in h for
the VaR objective function to be maximized.

An implication of this result is that VaR measures obtained from high frequency
data for a relatively short span of time (say 1 or 2 years) when investors have
different planning horizons may be dangerous. For long term investing horizons,
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Figure 5: VaR and Term Structure. The left panel shows the combinations of
(monthly) expected returns and volatility resulting of maximizing the VaR objec-
tive function for α = 0.025 and h = 1, .., 12. The dot corresponds to the optimal
portfolio for h = 1 that is consistent with quadratic preferences. The right panel
shows the changes in γ that would be needed for the quadratic preferences portfolio
to match the VaR portfolio when h changes.

it is needed to have consistent estimators of at least the unconditional first two
moments of the distribution of returns. One of the requirements for this to
happen is for the distribution to be ergodic for these moments and that the
sample used covers a representative realization of “all states” of nature.

Additionally, as agents have different planning horizons, a universal VaR limit
may be undesirable for some agents (particularly long term investors) as the
second order considerations are not as important for them.

Multifunds (the ability of agents to choose from different portfolio strategies
depending on the characteristics of the affiliates), with properly set varying
VaR limits, may be an attractive alternative.

However, there is a final consideration that a regulator must consider when set-
ting this type of limits for pension funds. The regulator may be interested on
maximizing the pension attained with the accumulated resources. This embod-
ies an annuitization risk at the moment of retirement. When retiring, a person
usually buys an annuity. The price of the annuity at the moment of retire-
ment depends, among others facts, on interest rates at that time. Therefore,
the lower (higher) interest rates are at the moment of retirement, the higher
(lower) the price of a unit of pension would be. Consequently, the same amount
of accumulated funds would buy a lower (higher) pension. This is the same as
saying that even when close to retirement, the investment horizon of a person
is still significantly long. This should be taken into account at the moment of
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setting restrictions to volatility.

4 Concluding remarks

This paper presents a framework for analyzing some of the implications that VaR-
based regulation may have on how agents choose their portfolios.
It is shown that, under certain conditions, VaR limits can be seen as maximum

expected return or maximum volatility constraints. In these cases, VaR portfolio
strategies and VaR limits produce portfolios that are on the mean-variance frontier.
The conditions under which these results hold are relatively restrictive and should be
tested.
In terms of how VaR-based regulation is conducted for the case of pension funds,

it is contended that more effort should be taken on quantifying the potential discrep-
ancies between the principal (affiliate) and the agent (fund manager). This is crucial
because, one of the main reasons for setting VaR limits would be that the agent is
less risk averse than the principal. In principle, in such case, VaR limits in line with
the preferences of the principal might be desirable. As risk aversion varies across
systematic characteristics of the principal or planning horizons differ, a unique VaR
limit is undesirable.
Furthermore, as this industry is characterized by long term investors, VaR limits

may seriously affect pensions in the long run, because they not only restrict volatility,
but also expected returns. Additionally, volatility or VaR limits might not be a good
measure of the relevant risk phased by the future pensioner if the annuitization risk is
ignored. A way to incorporate it, might be to express rates of return and volatilities
in terms of units of pension; although this may be difficult to do in practice.
From a practical stand-point, regulators should make more efforts on obtaining

precise estimators of the moments of the returns of assets, given that the availability
of this information is crucial for setting an adequate VaR limit. Historical VaR
computations using high frequency data for a short span period may not be relevant
risk measures for most agents (considering their planning horizons).
When VaR limits are properly set, quantitative limits are undesirable. They

preclude agents from diversifying their portfolios and conduce to suboptimal mean-
variance combinations. However, as is the case with any regulation, costs and benefits
should be assessed and restrictions relaxed when possible.
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